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Abstract—We consider a model of a process in a cocurrent packed-bed column with the simplest
kinetics of the rate of liquid holdup formation. Under study is the dependence of it on the time-
periodic velocities of the liquid and gas flows in a neighborhood of the stationary values of these
velocities. The principal terms of the asymptotics in time are found for the liquid holdup and the flow
velocities. We detect the growth of the amplitudes of the sinusoidal oscillations of the liquid holdup
and the liquid and gas velocities with respect to the column length. The constructed model is used
for design of the cocurrent two-phase columns.
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1. STATEMENT OF THE PROBLEM

The one-dimensional transport of a two-phase flow of liquid and gas is described by the balance
equations as follows [1, 2]:

∂h

∂t
− ∂vL

∂z
= 0,

∂h

∂t
+

∂vG

∂z
= 0,

∂h

∂t
= −k(h − h∞(vL, vG)). (1.1)

The boundary conditions for the gas velocity vG and the liquid velocity vL are given for z = 0 at the inlet
to the column:

vG|z=0 = ψ(t), vL|z=0 = ϕ(t), (1.2)

and the initial data for vG and vL and the function h(z, t) have the form

vG|t=0 = v0
G(z), vL|t=0 = v0

L(z), (h(z, t) − h∞(vL, vG)|t=0 = 0. (1.3)

Here h(z, t) stands for the concentration of the liquid at a point (z, t) and h∞(vL, vG) is a sufficiently
smooth function of (vL, vG).

Integrating the first two equations of (1.1), we express vL and vG as

vL(z, t) =

z∫

0

∂h

∂t
dz + ϕ(t), (1.4)

vG(z, t) = −
z∫

0

∂h

∂t
dz + ψ(t). (1.5)

The insertion of vL and vG from (1.4) and (1.5) in the last equation in (1.1) gives a nonlinear integro-
differential equation for finding h(z, t). In general, a solution to this equation for an arbitrary nonlinear
function h∞(vL, vG) and initial data from (1.3) does not exist “in the large” for all t > 0. We can choose
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a nonlinear function h∞(vG, vL) such that the solution h(z, t) will destroy in finite time. But it is also
possible to prove the well-posedness of problem (1.1)–(1.3) “in the small” with respect to time in
the class C1(QT ), where QT = {(z, t) : 0 ≤ z ≤ L, 0 ≤ t ≤ T}, for smooth initial and boundary data
satisfying the compatibility conditions up to the first order and sufficiently small T > 0.

In mathematical modeling of chemical processes, it is necessary to prove not only the well-posedness
of the problem, but also to carry out a qualitative analysis of solutions to the corresponding equations.
This study allows us (for example, see [3, 4]) to initially confirm the coincidence of the properties of the
models with the available experimental data at the qualitative level as well as to predict the possibility
of new effects and their use in the control and optimization of processes. Moreover, it is first necessary
to find the conditions (parameters) which would guarantee the stability of the stationary states and the
stabilization of nonstationary regimes to them from different initial conditions.

In our case, the experimental data obtained in the cocurrent column show that the concentrations of
the liquid and the gas as well as their velocities vL and vG stabilize over time to constant values if the
values vL and vG at the inlet z = 0 to the column are constant (i.e., do not depend on t).

The equations imply that if vL and vG are some constants then the numbers vL, vG, and h∞(vL, vG)
constitute stationary solutions to (1.1). It can be proved that, for the analysis of the stability of
stationary solutions to (1.1)–(1.3), it is possible to apply the linearization principle (the Lyapunov’s
First Method) justified for the general parabolic problems in the works by T. I. Zelenyak, V. S. Belonosov,
and M. P. Vishnevskii and, for a class of hyperbolic problems, by N. A. Eltysheva and other authors (for
instance, see [5–7]).

In the case of the asymptotic stability of a stationary solution, the linearization principle guarantees
the solvability of the nonlinear problem “in the large” with respect to time from the initial data taken
in a certain neighborhood of this stationary solution. Moreover, the solutions to the nonlinear problem
with the initial data in a small neighborhood of a stationary solution stabilizes to this stationary solution,
which agrees well with the experimental data. Therefore, leaving the same notation for the deviations
of solutions from the stationary solutions for the sake of simplicity, we linearize the equations on this
stationary solution. Instead of the original system, we obtain a system of the previous kind (1.1), where
the new function h∞(vL, vG) is linear:

h∞(vL, vG) = λvL + γvG + κ. (1.6)

The constant parameters λ, γ, and κ are given by the formulas

λ =
∂h∞(vL, vG)

∂vL
, γ =

∂h∞(vL, vG)
∂vG

, κ = h∞(vL, vG)

calculated from the original function h∞(vL, vG) at the stationary solution under consideration. Preserve
the same notation for the solution to the linearized problem and assume in what follows that the function
h∞(vL, vG) has the form (1.6), where we, without loss of generality, assume that κ = 0. In the sequel,
we suppose that the boundary data (1.2) and the initial conditions (1.3) are some differentiable functions
of their variables and satisfy the compatibility conditions up to the first order.

Multiplying (1.4) by λ and (1.5) by γ, summing up and using (1.6), we obtain

∂h

∂t
= −k(h − F (t)) + m

z∫

0

∂h

∂t
dz, (1.7)

where F (t) = λϕ(t) + γψ(t) and m = k(λ − γ). The initial data in (1.3) imply

(h(z, t) − F (t))|t=0 = 0. (1.8)
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2. WELL-POSEDNESS OF THE PROBLEM
For analyzing the well-posedness of the linearized problem, it suffices to prove the well-posedness of

problem (1.7), (1.8) since, by (1.4) and (1.5), the functions vL(z, t) and vG(z, t) are calculated explicitly
via h(x, t).

Rewrite (1.7), (1.8) as the integro-differential equation

∂

∂t

⎛
⎝h − m

z∫

0

h(x, t) dx

⎞
⎠ = −kh + kF (t), h(z, 0) = F (0) = c. (2.1)

Introduce the function

q(z, t) = h − m

z∫

0

h(x, t) dx. (2.2)

The initial condition h(z, t)|t=0 = c yields the initial condition for q(z, t):

q(z, 0) = c(1 − mz). (2.3)

The solution to (2.2) can be found in the form

h(z, t) = q(z, t) + m

z∫

0

em(z−x)q(x, t) dx. (2.4)

Formulas (2.2) and (2.4) give h(z, t) whenever q(z, t) is known or yield q(z, t) whenever h(z, t) is
available. Therefore, it suffices to establish the solvability of the problem:

∂q(z, t)
∂t

= −k

⎛
⎝q(z, t) + m

z∫

0

e−m(x−z)q(x, t) dx

⎞
⎠ + kF (t), q(z, 0) = c(1 − mz). (2.5)

This problem is equivalent to the equation obtained by the time integration of (2.5):

q(z, t) = −k

t∫

0

q(z, τ) dτ − km

t∫

0

z∫

0

e−m(x−z)q(x, τ) dxdτ + f(z, t), (2.6)

where f(z, t) = c(1 − mz) + k
t∫
0

F (τ) dτ is known.

The existence and uniqueness of a solution to (2.6) can be proved in a standard manner. Moreover,
below we prove that, by introducing a new sought function, (2.5) is reduced to a Goursat problem for the
telegraph equation whose solution is found by constructing a Riemann function. Therefore, assuming
the well-posedness of the linearized problem (1.1)–(1.3) for h∞(vL, vG) of the form (1.6) to be proved,
we investigate the qualitative properties of the solution.

3. BEHAVIOR OF THE SOLUTION FOR CONSTANT BOUNDARY DATA
Study the solution of (1.1)–(1.3) in the case when the boundary conditions are constant; i.e.,

ψ(t) ≡ const and ϕ(t) ≡ const. Then

F (t) = λϕ(t) + γψ(t) = F (0) ≡ const.

Putting

u(z, t) = h(z, t) − F (0), (3.1)

from (1.7) we obtain the problem concerned the behavior of solutions to

∂u

∂t
= −ku + m

z∫

0

∂u

∂t
dz (3.2)
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in a neighborhood of the zero under small perturbations of the initial data:

u(z, 0)|t=0 = u0(z). (3.3)

As was observed above, a solution to (3.2), (3.3) exists for all t ≥ 0 for all perturbations. On the
solutions to (3.2), (3.3), we construct a Lyapunov functional in the form

A(u) =

L∫

0

⎛
⎝u(z, t) − m

z∫

0

u(x, t) dx

⎞
⎠

2

dz. (3.4)

The calculation of the derivative of this functional yields

∂

∂t
A(u) = 2

L∫

0

⎛
⎝u(z, t) − m

z∫

0

u(x, t) dx

⎞
⎠

⎛
⎝∂u

∂t
(z, t) − m

z∫

0

∂u

∂t
(x, t) dx

⎞
⎠ dz

= 2

L∫

0

⎛
⎝u(z, t) − m

z∫

0

u(x, t) dx

⎞
⎠ (−ku(z, t)) dz

= −2k

L∫

0

u2(z, t) dz + km

L∫

0

d

dz

⎛
⎝

z∫

0

u(x, t) dx

⎞
⎠

2

dz

= −2k

L∫

0

u2(z, t) dz + km

⎛
⎝

z∫

0

u(x, t) dx

⎞
⎠

2 ∣∣∣∣∣
L

0

= −2k

L∫

0

u2(z, t) dz + km

⎛
⎝

L∫

0

u(x, t) dx

⎞
⎠

2

;

i.e.,

∂

∂t
A(u) = −2k

L∫

0

u2(z, t) dz + km

⎛
⎝

L∫

0

u(x, t) dx

⎞
⎠

2

. (3.5)

From (3.4) and (3.5) we see that, for k > 0 and m ≤ 0,

A(u) ≥ 0,
∂

∂t
A(u) ≤ 0. (3.6)

The Cauchy–Bunyakovskii inequality
⎛
⎝

L∫

0

u(z, t) dz

⎞
⎠

2

≤ L

L∫

0

u2(x, t) dx

and (3.5) imply that if

−2k + k|m|L < 0, (3.7)

then on solutions to (3.2) we have
∂

∂t
A(u) ≤ 0. Inequality (3.7) also holds for fixed k and small m and L

or for given λ − γ, L, and small k. Furthermore, (3.7) always holds for all values of the parameters
satisfying |m|L < 2.

Corollary 1. If k > 0 and λ − γ ≤ 0 then problem (3.2) has no periodic solutions.

Proof. Equality (3.6) is possible for such parameters if and only if u(z, t) ≡ 0. This means that there is
no nontrivial (nonzero) solution to (3.2) periodic in time.
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Corollary 2. If k > 0, λ − γ ≤ 0, and the boundary data are constant (i.e., ψ(t) ≡ const and
ϕ(t) ≡ const) then problem (1.1)–(1.3) has only a constant solution as a stationary solution and
has no solutions periodic in time.

We consider the proof of the stability of this stationary solution in Section 6.

4. SOLVING THE PROBLEM WITH THE USE OF THE RIEMANN FUNCTION
FOR CONSTANT INLET DATA

Solve the problem (3.2), (3.3) explicitly. Let us construct the Riemann function for the telegraph
equation that follows from the previous arguments.

Rewrite (3.2), (3.3) in a convenient form:

∂u

∂t
= −ku + m

z∫

0

∂u

∂t
dz, u(z, 0) ≡ c = const. (4.1)

As in (2.2), put

u − m

z∫

0

u(x, t) dx = q(z, t), q(z, 0) = c(1 − mz). (4.2)

The change

p(z, t) = ekte−mzq(z, t), p(z, 0) = e−mzq(z, 0) (4.3)

leads to the problem

∂p

∂t
= −km

z∫

0

p(ξ, t) dξ, p(0, t) = c, p(z, 0) = e−mz(1 − mz)c = p0(z). (4.4)

As in (2.2), u(z, t) can be written as

u(z, t) = e−ktemz

[
p(z, t) + m

z∫

0

p(x, t) dx

]
. (4.5)

Formulas (4.2)–(4.5) give us u(z, t) if p(z, t) is known or p(z, t), if u(z, t) is known.
The equation in (4.4) is reduced to the telegraph equation. Indeed, differentiating (4.4) with respect

to z, we obtain

∂2p(z, t)
∂z∂t

= −kmp(z, t).

For problem (4.4), construct the Riemann function R(z, t, σ, τ) [8, p. 132] that in our case is

R(z, t, σ, τ) = J0

(√
4km(z − σ)(t − τ)

)
, (4.6)

where J0(ξ) is the Bessel function with J0(0) = 1. The properties of the Bessel function imply

∂2R(z, t, σ, τ)
∂z∂t

=
∂2R(z, t, σ, τ)

∂σ∂τ
= −kmR(z, t, σ, τ), (4.7)

R(z, t, z, τ) = R(z, t, σ, t) = 1. (4.8)

Multiplying the equation

∂2p(σ, τ)
∂σ∂τ

+ kmp(σ, τ) = 0 (4.9)
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by R(z, t, σ, τ) = J0

(√
4km(z − ς)(t − τ)

)
and integrating by parts over 0 ≤ σ ≤ z and 0 ≤ τ ≤ t, and

using (4.7), (4.8), we infer

p(z, t) = p(0, t) +
∫ z

0

∂p(σ, 0)
∂σ

R(z, t, ς, 0) dσ +

t∫

0

p(z, τ)
∂R(z, t, z, τ)

∂τ
dτ

−
t∫

0

p(0, τ)
∂R(z, t, 0, τ)

∂τ
dτ = c +

z∫

0

∂p(σ, 0)
∂σ

R(z, t, σ, 0) dσ − c

t∫

0

∂R(z, t, 0, τ)
∂τ

dτ

= c +

z∫

0

∂p(σ, 0)
∂σ

R(z, t, σ, 0) dσ − c
(
R(z, t, 0, t) − R(z, t, 0, 0)

)

= cR(z, t, 0, 0) +

z∫

0

∂p0(σ)
∂σ

R(z, t, σ, 0) dσ = cJ0

(√
4kmzt

)
+

z∫

0

∂p0(σ)
∂σ

J0

(√
4kmt(z − σ)

)
dσ.

Thus, we have the following for the solution to (4.4):

p(z, t) = cJ0

(√
4kmzt

)
+

z∫

0

∂p0(σ)
∂σ

J0

(√
4kmt(z − σ)

)
dσ, (4.10)

which we also transform to a convenient form:

p(z, t) = cJ0

(√
4kmzt

)
+

z∫

0

∂p0(σ)
∂σ

J0

(√
4kmt(z − σ)

)
dσ

= p0(z) −
z∫

0

p0(σ)
∂J0

(√
4kmt(z − σ)

)
∂σ

dσ = p0(z) +

z∫

0

p0(σ)
∂J0

(√
4kmt(z − σ)

)
∂z

dσ

= p0(z) +
∂

∂z

z∫

0

p0(σ)J0

(√
4kmt(z − σ)

)
dσ − p0(z).

We finally have

p(z, t) =
∂

∂z

z∫

0

p0(σ)J0

(√
4kmt(z − σ)

)
dσ. (4.11)

5. SOLVING THE PROBLEM WITH THE USE OF THE RIEMANN FUNCTION
FOR GENERAL INLET CONDITIONS

If the boundary data are nonconstant then F (t) = λϕ(t) + γψ(t) + κ is not constant either. There-
fore, problem (2.1) can be rewritten as

∂

∂t

⎛
⎝h − m

z∫

0

h(x, t) dx

⎞
⎠ = −kh + kF (t), h(z, t)|t=0 = F (0) = F0 ≡ const. (5.1)

For z = 0, the solution to (5.1) has the form

h(0, t) = e−kt

⎛
⎝F0 +

t∫

0

kF (τ)ekτ dτ

⎞
⎠ .
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After differentiating (5.1) with respect to z, we can see that h(z, t) is a solution to the following
problem:

∂2h

∂z∂t
= −k

∂h

∂z
+ m

∂h

∂t
, h(0, t) = e−kt

⎛
⎝F0 +

t∫

0

kF (τ)ekτ dτ

⎞
⎠ , h(z, 0) = F0. (5.2)

Define the function p(z, t) as

h(z, t) = p(z, t)e−kt+mz . (5.3)

This leads to the problem

∂2p

∂z∂t
= −kmp, p(0, t) =

⎛
⎝F0 +

t∫

0

kF (τ)ekτ dτ

⎞
⎠ , p(z, 0) = F0e

−mz . (5.4)

It is easy to prove that if p(z, t) is solution to (5.4) then h(z, t) = p(z, t)e−kt+mz is a solution to (5.1).
Above we have shown that a solution to this problem exists and is unique. Therefore, it suffices to find
the explicit form of the solution to (5.4). The use of the Riemann function in the integral representation
for the solution to (5.4) gives

p(z, t) = p(0, t) +

z∫

0

∂p(σ, 0)
∂σ

R(z, t, σ, 0) dσ −
t∫

0

p(0, τ)
∂R(z, t, 0, τ)

∂τ
dτ

= F0R(z, t, 0, 0) +

z∫

0

∂p(σ, 0)
∂σ

R(z, t, σ, 0) dσ +

t∫

0

kF (τ)ekτR(z, t, 0, τ) dτ

= F0J0(
√

4kmzt ) +

z∫

0

∂p(σ, 0)
∂σ

J0(
√

4kmt(z − σ) ) dσ +

t∫

0

kF (τ)ekτJ0(
√

4kmz(t − τ) ) dτ.

Then h(z, t) can be written as the sum of three summands:

h(z, t) = e−kt+mz

[
F0J0(

√
4kmzt ) − mF0

z∫

0

e−mσJ0(
√

4kmt(z − σ) ) dσ

+

t∫

0

kF (τ)ekτJ0(
√

4kmz(t − τ) ) dτ

]
= I1(z, t) + I2(z, t) + I3(z, t). (5.5)

6. QUALITATIVE PROPERTIES OF SOLUTIONS TO THE PROBLEM

Using the properties of the Bessel function, we will study the qualitative behavior of solutions for the
concentration and the mean concentration of the liquid in a volume. Using the properties of the Bessel
function, we obtain the following estimate for positive k > 0 and m ≥ 0:

|p(z, t)| ≤ K1

(
max |p0(z)| + max

∣∣∣∣dp0(z)
dz

∣∣∣∣
)

,

which gives the following for a solution u(z, t) in (3.2):

|u(z, t)| = |h(z, t) − F (0)| ≤ e−ktemz

∣∣∣∣∣∣p(z, t) + m

z∫

0

p(x, t) dx

∣∣∣∣∣∣ ≤ K2e
−kt. (6.1)
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This means the asymptotic stability of a stationary solution for the concentration under constant inlet
velocities

F (t) = λϕ(t) + γψ(t) = F (0) ≡ const.

If the inlet data in the packed-bed column are periodic functions with period τ0 then the concentration
of the liquid tends to some function that is periodic with the same period τ0. Prove that.

By the boundedness of the integrands and the properties of the Bessel functions, there are some
constants k1 and k2 such that |Ii(z, t)| ≤ kie

−kt for i = 1, 2, where

I1(z, t) = e−kt+mz [F0J0(
√

4kmzt )],

I2(z, t) = e−kt+mz

[
− mF0

z∫

0

e−mσJ0(
√

4kmt(z − σ) ) dσ

]
.

Then the difference of h(z, t) in (5.5) and I3(z, t), where

I3(z, t) = e−kt+mz

[ t∫

0

kF (τ)ekτJ0(
√

4kmz(t − τ) ) dτ

]
, (6.2)

satisfies the following estimate with some constant k0 > 0:

|h(z, t) − I3(z, t)| = |I1 + I2| ≤ k0e
−kt. (6.3)

Using the periodicity of F (t), prove that I3(z, t) stabilizes to a periodic function with the same period
as t → ∞. We infer

I3(z, t + τ0) = e−kt+mz

t+τ0∫

0

kF (τ)ek(τ−τ0)J0(
√

4kmz(t + τ0 − τ) ) dτ

= e−kt+mz

t∫

−τ0

kF (σ + τ0)ekσJ0(
√

4kmz(t − σ)) dσ = e−kt+mz

t∫

−τ0

kF (σ)ekσJ0(
√

4kmz(t − σ) ) dσ

= e−kt+mz

0∫

−τ0

kF (σ)ekσJ0(
√

4kmz(t − σ) ) dσ + e−kt+mz

t∫

0

kF (σ)ekσJ0(
√

4kmz(t − σ) ) dσ

= e−kt+mz

0∫

−τ0

kF (σ)ekσJ0(
√

4kmz(t − σ) ) dσ + I3(z, t),

which implies

|I3(z, t + τ0) − I3(z, t)| ≤ K3e
−kt, (6.4)

and the previous inequalities imply

|h(z, t + τ0) − h(z, t)| ≤ |h(z, t + τ0) − I3(z, t + τ0)|
+ |I3(z, t + τ0) − I3(z, t)| + |I3(z, t) − h(z, t)| ≤ K4e

−kt.

Consider the asymptotics of the integral I3(z, t) for large times by specifying the form of F (t). Put

F (t) = c + λϕ(t) + γψ(t) = c + A sin(ωt),

where A and ω are the amplitude and frequency of the oscillations of the velocities at the inlet near
stationary value c = F (0). This enable us not only to calculate an explicit asymptotic formula for the
solution but also allow us to explain the experimentally observed periodic waves of the liquid “running”
over the column length with a considerably increasing concentration amplitude near the outlet [1].
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Let us use the formula for integrals of the Bessel functions [9, p. 669]:

B =

∞∫

0

Jn(λρ)e−θλ2
λn+1 dλ =

1
2θ

( ρ

2θ

)n
e−ρ2/(4θ). (6.5)

We demonstrated above that the asymptotic of the concentration h(z, t) is determined by the integral
I3(z, t). Perform the change of variables t − τ = λ2/(4kmz) in (6.2). By convergence as t → ∞, the
integral in (6.2) is representable as I3(z, t) = l1(z, t) + l2(z, t), where

l1(z, t) = emz

∞∫

0

kF

(
t − λ2

4kmz

)
e−λ2/(4mz)J0(λ) d

(
λ2

4kmz

)
,

l2(z, t) = −emz

∞∫
√

4kmzt

kF

(
t − λ2

4kmz

)
e−λ2/(4mz)J0(λ) d

(
λ2

4kmz

)
.

Estimate l2(z, t) using the boundedness of the functions therein. There exists a constant K5 for which

|l2(z, t)| ≤ K5

∣∣∣∣∣∣∣

∞∫
√

4kmzt

e−λ2/(4mz) d

(
λ2

4kmz

)∣∣∣∣∣∣∣
= K5e

−kt.

Now, calculate l1(z, t) by putting F (t) = c + A sin(ωt) and using the Euler’s formulas and (6.5):

l1(z, t) = emz

∞∫

0

F

(
t − λ2

4kmz

)
J0(λ) d(e−λ2/(4mz))

= emz

∞∫

0

(
c + A sin ω

(
t − λ2

4kmz

))
J0(λ) d(e−λ2/(4mz))

= emzc

∞∫

0

J0(λ) d(e−λ2/(4mz)) + emzA

∞∫

0

sin ω

(
t − λ2

4kmz

)
J0(λ) d(e−λ2/(4mz))

= emzc

∞∫

0

J0(λ)
λ

2mz
e−λ2/(4mz) dλ

+ emzA

∞∫

0

λ

2mz
e−λ2/(4mz) e

iω(t−λ2/(4kmz)) − e−iω(t−λ2/(4kmz))

2i
J0(λ) dλ

= c + Aemz

∞∫

0

λ

2mz
e−λ2/(4mz) e

iω(t−λ2/(4kmz)) − e−iω(t−λ2/(4kmz))

2i
J0(λ) dλ

= c + 2ARe

⎛
⎝emz

∞∫

0

λ

2mz
e−λ2/(4mz) e

iω(t−λ2/(4kmz))

2i
J0(λ) dλ

⎞
⎠ .

Using (6.5) again, find the real part of the integral in the previous expression. We finally obtain the
following asymptotics in time for the concentration h(z, t):

h(z, t) = c + A cos αemzsin2 α sin
(
ωt +

mz

2
sin 2α − α

)
+ O(e−kt),

∂h

∂t
= Aω cos αemzsin2 α cos

(
ωt +

mz

2
sin 2α − α

)
+ O(e−kt),

(6.6)
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where sin α = ω/
√

ω2 + k2 and cos α = k/
√

ω2 + k2.
Note that this asymptotic formula can be differentiated with respect to z and t and these derivatives

satisfy analogous asymptotic formulas. Therefore, from the equations and boundary conditions (1.1)
and (1.2) we find the asymptotic formulas for the liquid and gas velocities:

vL(z, t) = −Aω cos α

z∫

0

emξsin2 α cos
(

ωt +
mξ

2
sin 2α − α

)
dξ + ϕ(t) + O(e−kt), (6.7)

vG(z, t) = Aω cos α

z∫

0

emξsin2 α cos
(

ωt +
mξ

2
sin 2α − α

)
dξ + ψ(t) + O(e−kt). (6.8)

The mean concentration over the period τ0 = 2π/ω is asymptotically equal to

h̄(z, t) =
1
τ0

t+τ0∫

t

h(z, θ) dθ = c + O(e−kt).

Thus,

(1) if F (t) is a periodic function then h, vL, vG, and h̄(t) tend to periodic functions with the same
period as time tends to infinity;

(2) if the boundary data ψ(t) and ϕ(t) tend to constants and λ ≤ γ then h, vL, vG, and h̄(t) tend to
constants as t tends to infinity.

The analysis of the resulting asymptotic formula for solutions to the problem shows that the
amplitude of liquid concentration grows with respect to the coordinate z exponentially, the waves of
high concentration liquid “run” along the column with the same frequency as small perturbations of
the input velocities of the liquid and/or gas at the packed-bed column inlet. Moreover, there is a shift
in the oscillation phase of the waves depending on the spatial coordinate, which also well describes
the observed experimental facts. For describing not only a qualitative picture of the experiment but
also a quantitative comparison with the experiment, in [2], there were chosen experimentally varied
parameters of the model and the column characteristics for various kinds of liquid and gas. Then, using
the constructed model with the so-found parameters, the possibility was considered of the theoretical
minimization of the energy losses averaged over the column length and the period of the sinusoidal
oscillations of the velocity at the inlet. For different values of the varied parameters, in comparing with
the stationary input velocities, it turned out that all cases are realized for the model (see [9]):

(a) the mean energy losses cannot be reduced in principle by periodic oscillations of the inlet gas and
liquid velocities for any oscillation amplitudes of phase velocities;

(b) the mean energy losses can always be reduced by periodic oscillations of the inlet gas and liquid
velocities for any oscillation amplitudes of the inflows of phase velocities;

(c) the mean energy losses can be reduced conditionally by periodic oscillations of the inlet gas and
liquid velocities under a special synchronization of the oscillation amplitudes of the inflows of
phase velocities.

The possibility of occurrence of one of the cases (a)–(c) depends (as was established theoretically
for the model), in particular, on the regulated values of the parameters: the oscillation frequency ω and
the column length L. The model theoretically predicts the “mathematical” fact (not yet explained by the
chemical process engineers) that cases (a)–(c) may be realized regardless of the parameters ω and L.

Despite a sufficient simplicity of the model, it not only describes the waves running with an increase
of their amplitudes and observed in the cocurrent column, but also predicts a theoretical possibility of
overshoot phenomena in a countercurrent column when the inlet velocities of the gas and liquid phases
are given at the opposite ends of the column and the kinetic parameter k tends to infinity [10].
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